A relative, strictly ergodic model theorem for infinite measure-preserving systems
نویسندگان
چکیده
منابع مشابه
Ergodic and Spectral Analysis of Certain Infinite Measure Preserving Transformations
0. Introduction. Throughout this paper T will denote a measure preserving transformation on a cr-finite infinite measure space (X, (B, m) which is point isomorphic with the Lebesgue measure space of the real line. Unless otherwise stated, T will be one-one. Equations involving functions or sets will always be interpreted modulo sets of measure zero. T is said to be ergodic if T~1E = E, ££(B, im...
متن کاملA Weak Ergodic Theorem for Infinite Products of Lipschitzian Mappings
Let K be a bounded, closed, and convex subset of a Banach space. For a Lipschitzian self-mapping A of K , we denote by Lip(A) its Lipschitz constant. In this paper, we establish a convergence property of infinite products of Lipschitzian self-mappings of K . We consider the set of all sequences {At}t=1 of such selfmappings with the property limsupt→∞ Lip(At) ≤ 1. Endowing it with an appropriate...
متن کاملQuasi-factors for Infinite-measure Preserving Transformations
This paper is a study of Glasner’s definition of quasi-factors in the setting of infinite-measure preserving system. The existence of a system with zero Krengel entropy and a quasi-factor with positive entropy is obtained. On the other hand, relative zero-entropy for conservative systems implies relative zero-entropy of any quasi-factor with respect to its natural projection onto the factor. Th...
متن کاملOn Strictly Weak Mixing C-dynamical Systems and a Weighted Ergodic Theorem
Recently, the investigation of the ergodic properties of quantum dynamical systems had a considerable growth. Since the theory of quantum dynamical systems provides convenient mathematical description of the irreversible dynamics of an open quantum system (see [9], sec.4.3, [31],[27]). In this setting, the matter is more complicated than in the classical case. Some differences between classical...
متن کاملExtensions and Multiple Recurrence of infinite measure preserving systems
We prove that an extension of an invertible, multiply-recurrent infinite measure preserving transformation is also multiply-recurrent.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal d'Analyse Mathématique
سال: 2020
ISSN: 0021-7670,1565-8538
DOI: 10.1007/s11854-020-0098-3